Perspectives on the Integration between First-Principles and Data-Driven Modeling

Computers & Chemical Engineering 2022

Efficiently embedding and/or integrating mechanistic information with data-driven models is essential if it is desired to simultaneously take advantage of both engineering principles and data-science. The opportunity for hybridization occurs in many scenarios, such as the development of a faster…

Two-Stage Approach to Parameter Estimation of Differential Equations Using Neural ODEs

Industrial & Engineering Chemistry Research 2021

Modeling physiochemical relationships using dynamic data is a common task in fields throughout science and engineering. A common step in developing generalizable, mechanistic models is to fit unmeasured parameters to measured data. However, fitting differential equation-based models can be computation-intensive…

AC-Optimal Power Flow Solutions with Security Constraints from Deep Neural Network Models

Computer Aided Chemical Engineering 2021

In power grid operation, optimal power flow (OPF) problems are solved several times per day to find economically optimal generator setpoints that balance given load demands. Ideally, we seek an optimal solution that is also “N-1 secure”, meaning the system can…

Data-driven Spatial Branch-and-bound Algorithm for Box-constrained Simulation-based Optimization

Journal of Global Optimization 2021

The ability to use complex computer simulations in quantitative analysis and decision-making is highly desired in science and engineering, at the same rate as computation capabilities and first-principle knowledge advance. Due to the complexity of simulation models, direct embedding of…

Surrogate-Based Optimization for Mixed-Integer Nonlinear Problems

Computers & Chemical Engineering 2020

Sun Hye Kim Fani Boukouvala

Simulation-based optimization using surrogate models enables decision-making through the exchange of data from high-fidelity models and development of approximations. Many chemical engineering optimization problems, such as process design and synthesis, rely on simulations and contain both discrete and continuous decision…

Managing Uncertainty in Data-Driven Simulation-Based Optimization

Computers & Chemical Engineering 2019

Gordon Hullen Jianyuan Zhai Sun Hye Kim Anshuman Sinha Matthew Realff Fani Boukouvala

Optimization using data from complex simulations has become an attractive decision-making option, due to ability to embed high-fidelity, non-linear understanding of processes within the search for optimal values. Due to lack of tractable algebraic equations, the link between simulations and…

Machine learning-based surrogate modeling for data-driven optimization: a comparison of subset selection for regression techniques

Optimization Letters 2019

Optimization of simulation-based or data-driven systems is a challenging task, which has attracted significant attention in the recent literature. A very efficient approach for optimizing systems without analytical expressions is through fitting surrogate models. Due to their increased flexibility, nonlinear…

Nonlinear Variable Selection Algorithms for Surrogate Modeling

AIChE Journal 2019

Jianyuan Zhai Fani Boukouvala

Having the ability to analyze, simulate and optimize complex systems is becoming more important in all engineering disciplines. Decision-making using complex systems usually leads to nonlinear optimization problems, which rely on computationally expensive simulations. Therefore, it is often challenging to…