Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus. Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc,

Recent News

DDPSE welcomes new undergrad student!

Atlanta, GA

January 23, 2023

The DD-PSE lab has grown! Riddhi Bhattacharya joins as a new undergraduate researcher and will work with Elisavet on the supply-chain of plastic recycling. Welcome, Riddhi!

Sid successfully passed his qualification exam!

Atlanta, GA

January 20, 2023

Sid successfully passed his quals! Congratulations!

DDPSE team at AIChE 2022

Phoenix

November 20, 2022

DDPSE team gave a total of 4 talks and 2 posters at AIChE held at Phoenix, AZ. 2 of them were focused on modeling of mechanocatalytic plastic recycling, 1 talk was on data-driven optimization and rest of the talks on…

Latest Publications

Training Stiff Dynamic Process Models via Neural Differential Equations

Computer Aided Chemical Engineering 2022

William Bradley Gabriel S. Gusmão Andrew J. Medford Fani Boukouvala

A common step in developing generalizable, dynamic mechanistic models is to fit unmeasured parameters to measured data. Fitting differential equation-based models can be computationally expensive due to the presence of nonlinearity and stiffness. This work proposes a two-stage indirect approach…

Data-Driven Simultaneous Process Optimization and Adsorbent Selection for Vacuum Pressure Swing Adsorption

Chemical Engineering Research and Design 2022

Technologies for post-combustion carbon capture are essential for the reduction of greenhouse gas emissions to the atmosphere. However, they are still associated with high costs and energy consumption. Intensified processes for carbon capture have the potential to overcome these challenges…